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Methods developed in plasma physics are used for the investigation of the dispersion equa-
tion of small oscillations in locally homogeneous segments of collisionless gravitating sys-

tems of particles.

It is shown that such systems are unstable.
the calculation of the critical wavelength (in the sense of Jeans).

A formula is derived for
Systems formed by two

encountering interpenetrating "cold" and Maxwellianflows, and also "cold" and Maxwellian
systems at rest, are considered. The instability is of an oscillatory character for wave-
lengths less than a certain A, and thus differs from the aperiodic gravitational instability
of a continuous medium. Application to the Galaxy shows that in the circumsolar neighbor-

hood the time in which instability develops is of the order of 7~ 2 -

1. Introduction

Systems consisting of large numbers of inter-
acting particles can be described by statistical
methods. The simplest of such systems is a gas
of neutral particles whose properties can be de-
scribed by the Boltzmann equation for the distribu-
tion function. In connection with the development
of plasma physics, it has been shown that the an-
alogy between a plasma and an ordinary gas of
neutral particles is not exact since a plasma is a
self-consistent system. In such a system the
mutual interaction between an individual particle
and all others is governed by Coulomb's law, thus
giving rise to peculiarities of the collective phe-
nomena. The collective phenomena do not depend
on the presence of ordinary collisions that deter-
mine the situation in atomic or molecular gases,
and thus these phenomena also exist in a collision-
less plasma. In cases where the plasma can be
regarded as collisionless, the equations are sim-
plified because of the absence of the collision in-
tegral in the Boltzmann equation [1].

Gravitating systems have certain similarities
with collisionless plasma, even though there are
significant differences. The study of collective
phenomena in systems of self-gravitating particles,
i.e., particles with gravitational interactions, by

108 years.

analogy with a collisionless plasma is of interest
from the viewpoint of application to the dynamics of
star clusters, the Galaxy, and agglomerations of

galactic and related objects.
Collective phenomena in stellar dynamics have

been treated by Sweet [2], for instance. According
to his data, the number of stars in the "sphere of
mutual interaction® is sufficiently large, and there-
fore the Boltzmann equation can be used. Since the
stars in the Galaxy are surrounded by an inter-
stellar gas, it is natural to expect a strong collec-
tive interaction of the stars with the gas. Sweet

[2] in particular has proved that Jean's critical
wavelength, at which instability of the gas sets in,
can be decreased as a result of the relative ve-
locity between star and gas. In the Galaxy, for
instance, where the velocities of the Kapteyn flows
are known, the interstellar gas is unstable at all
wavelengths, i.e., Jean's critical wavelength is
practically nonexistent. Thus, the attempt to cal-
culate collective phenomena in the Galaxy leads to
very interesting results. We are interested in
another aspect of the question, namely the evolu-
tion of gravitational systems. We have therefore
considered collective processes in stellar systems
without taking account of the interstellar gas, since
the influence of the latter on the motion of the stars
is apparently not large.
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Since the gravitational interaction is of opposite
sign to the electrostatic interaction, results in the
relation of small perturbations in gravitational
systems should be qualitatively different from those
in the case of collisionless plasma. Besides, un-
like plasma, the equilibrium-state potential in the
case of gravitational interaction is not neutralized.
Thus, gravitational systems in nature are de-
cidedly inhomogeneous. However, in small re-
gions of the inhomogeneous systems. it can be
assumed that &, = const. In such regions one
can apply the results obtained for homogeneous
plasma. In this paper we give the results of a
study of longitudinal waves in a locally homogene-
ous system using a linearized approximation.

The analogous problem for homogeneous col-
lisionless plasma has been studied in numerous
works. As is well known, it is necessary to clearly
distinguish between two types of problems: (1) the
problem of oscillations with prescribed initial and -
boundary conditions, and (2) the problem of os-
cillations caused by fluctuating local deviations of
the distribution function from the equilibrium value.
In problems of the first type, the solution must be
strongly dependent on the initial and boundary con-
ditions. The method of solution of such problems
is that of integral transforms [3]. In the second
case we can seek the solution in a form inde-
pendent of initial conditions —for example, in the
form of plane waves (substitutional analysis). Of
course, this latter method does not yield exhaustive
quantitative information. However, by such means
one can obtain the dispersion equation, study the
types of waves, and examine the question of stabil-
ity. i

Below, by analogy with an infinite homo-
geneous collisionless plasma, we will derive the
dispersion equation for longitudinal waves in a
locally homogeneous system of gravitating par-
ticles. Since we are interested in the evolution of
the system, we will discuss its stability. We ex-
amined the following particular types of systems
of gravitating particles: (1) a system of particles
at rest, (2) a system of two streams of particles
flowing with identical speeds in opposite directions,
(3) a system of particles with Maxwellian distribu-
tion of velocities, (4) a system of two Maxwellian
streams of particles with equal and opposite rela-
tive velocities. The type of the waves has been
investigated in the third and fourth cases. We
calculated increments in some boundary cases.
They have been discussed for values of the par-
ameters that are typical for the Galaxy.
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2. Dispersion Equation

The basic equations of the problem are the
Boltzmann equation for the distribution function
f@, v, t) without the collision integral and the
Poisson equation for the gravitational potential
®(r, t). They form the system

of of of
§+V51—_+V¢'3";—0, 1)
AD = — 4aGM § fav, @)

where G is the gravitational constant, and M is the
mass of the individual particle. We will consider
particles of identical mass. However, as with a
plasma, the results can easily be generalized to
the case of an aggregate of different masses.

Let f experience a small disturbance f; (r,v,t)
from the equilibrium value fy(v), i.e.,

f=1fv) + fi(r,v,2), 3)
Since the system is locally homogeneous, f; de-
pends only on the velocity, and it has been nor-
malized to N — the number of particles per cubic
centimeter.
Correspondingly, ® also suffers a small devia-
tion ¢fr, t) from the equilibrium value &, i.e.,

D= @+ o(r, t). @)
Substituting (3) and (4) into (1) and (2) and
taking account of the smallness of f; and ¢, we can
obtain the following linearized system of equations
for f; and ¢:

ofs i dfo
o TV TV =0, ®)
Ap = — 4nGM S fudv. ©)

The solution for f; and ¢ will be sought in the
form of the plane waves

fulr, v, 8) = g(v) exp[i(kr — 0f)], (7)
@(r, ) = cexp [i(kr — 0?)], (®)

where k is the material wave vector, and w is the
complex frequency.

Substitution of (7) and (8) into (5) and (6) shows
that system (5) and (6) has a solution of the form (7)
and (8) provided the following relation is fulfilled:

k.2
ov
B=—af —a, )
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where @ = 47GM. Relation (9) connects the fre-
quency w with the wave vector k and is thus the dis-
persion equation for such waves.

Since we are interested in longitudinal waves,
the x axis will be chosen in the direction of the
wave vector k, and the integration in (9) will be
carried out with respect to v, and v,. The in-
tegrated function fj(v) will again be denoted by f;.
Expression (9) thus leads to

__ aS fdo 10)

L)
L’—ll

where u = w/k, k= |k|, v=vy, and f§ = dfy/dv.
In a plasma the corresponding dispersion equa-
tion has the form

m v—u’
—_—00

k=

(10a)

where m, e are the mass and charge of an elec-
tron. It can be seen that (10) and (10a) differ in
sign.

3. Stability Problem

Equation (10) defines growing (Imu > 0) and
stationary (Imu = 0) waves. The dispersion rela-
tion (10) does not describe damped waves because
they cannot exist at an arbitrary instant of time as
is assumed in substitutional analysis. Damped
waves depend strongly on the initial conditions and
the appropriate dispersion equation has another
form [3].

If therefore there exists a solution of (10) in
the upper half-plane, the system will be unstable.
Consequently, the absence of roots of (10) is a
criterion for stability. An analogous situation
arises in the case of a plasma. The stability of
a plasma was studied by Noerdlinger [4].

Noerdlinger proved that the plasma is stable
if and only if

v =P -1"-— <o a)

at every minimum of f,. Here p is a point where
f, assumes a minimum value, and the symbol P in-
dicates the principal value.

In proving the theorem in {4]'use was made of
the similarity of an integral in (10a) to the poten-
tial of an electrically-charged fﬂament. Applymg

can be

integration by parts, the integral ‘

expressed in the form

—mp—ulfdr =W =v@+ivw. a2

From (10a) and (12) it is clear that the plasma
is unstable when there is a point u for which
V(u) =0,

U(u) >0, ImU>0 13)

for a real value of k.

It follows from (13) that the plasma is stable
if and only if U(u) < 0 for all points on the curve
V() = 0 in the open upper half of the u-plane.

The problem thus ends in a study of the sign
of V(u) on the curves V(u) = 0. Noerdlinger car-
ried this out with the aid of an electrostatic an-
alogy and the theory of the complex potential.

W (u) determines a plane vector field. In the elec-
trostatic case, the vector of the field E = — VU,

Near the real axis of the u-plane we have

fo dv

W(u)——»PS —Ten

— + info’ (Re u). 14)

Since by (10a), 7f,'(Re u) = V =0, at the points
Reu = p, where V = 0 intersects the real axis, f
assumes an extreme value. Insofar as the charges
are situated on the real axis, the potential U is also
extremal at points where the curve V = 0 inter-
sects the real axis, and has a maximum at points
where the lines of force V = 0 leave the real axis.
It follows from the Cauchy-Riemann conditions
that on the real axis the normal component of the
U — o oy
d(lmu) ~ 9(Rew) °°

At points where the lines of force V = 0 depart
from the real axis 8U/8(Im u) < 0, since the poten-~
tial decreases along the lines of force. Conse-
quently, f, assumes a maximum value at point p.

It can also be proved that U is sign invariant on each
point of the curve V = 0 in the upper half-plane u, if
pU(u) < 0 [4]. This proves the theorem.

It should be noted that if f;, does not have a
minimum but a maximum (for example, one-peak
distributions), then integration of U(p) by parts
under the condition f;'(p) = 0 yields

electric field is I/, = —

fo(v) fo(p) 4

15

S o @s)

Then it is clear that U(p) < 0 as the integral of a

negative function. Thus, the analogous distribu-
tions in a plasma are stable.
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It is easy to see that a gravitating system is
stable when (13) is satisfied for all u.

The considered locally homogeneous segment
of a gravitating system is therefore stable if and

" only if

fo'dv

Up)=PS >0 16)

v

at all roots of f' = 0, where p is a root of f;' = 0.
One can generalize (15) in a similar way.
Hence, in the case of gravitation, the system is
locally unstable when f;, has at least one maximum.
Obviously, one encounters exactly such systems
in nature. Therefore actual gravitating systems
(galaxies, star clusters, etc.) are locally unstable.
Stability in the sense formulated above means
the absence of any wavelengths with respect to
which the system is unstable. If a system is un-
stable in this sense, there is a critical Jeans'
wavelength thatdetermines the boundaries of stabil-
ity of the system [5]. In the homogeneous case,
A cr can be determined by the formula [5]

(ﬁ”_ )z= k2= —aP _’l",(_v) dv, (16a)

Acr U um

where uy, is the principal maximum of f,. For
wavelength A < Ap the waves are damped. This
is Landau damping [3].

We have not taken account of the rotation,
which can stabilize the system. Thus, strictly
speaking, when the theory is applied to rotating
systems it only describes waves along the axis of
rotation.

It could also be pointed out that the present
investigation is not complete in the sense that the
type of instability arising remains undetermined.
It is still necessary to clarify whether the stability
is of the drifting or absolute type. However, this
question will not be touched upon in this article.

4. Particular Cases of Gravitating

Systems

1. "Cold'" Systems of Gravitating
Particles. When frequent collisions take place
in a gravitating system, it can be describedby hydro—
dynamic equations. In this case it is well known
that the dispersion equation for small oscillations
of a homogeneous medium at rest has the form

2 a-N
2 = = 2
u 2 Ccr 72 )

where c is the velocity of soﬁnd.

am
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The physical meaning of (17) is that the stabil-
ity or instability of the system is determined by the
balance of pressure (or of temperature) that tends
to decrease the density disturbances, and the gravita-
tional attraction, which acts in the opposite direc-
tion. If the pressure (temperature) is sufficiently
high, it hinders the gravitational compression and
the system is stable. Insofar as the attraction
that produces instability can be determined by the
size of the perturbation, it is clear that this size
is decisive. Thus, it follows from (17) that the
system is stable when c%p > @N /2, i.e., at high
temperatures, and the system is unstable when

cfr < aN/K?. For example, when cp = 0 (cold gas),

©? = —al. 18)

From (17) one finds the critical size of the per-
turbed region A, (Jeans' critical wavelength);
when A > A .. the system is always unstable.

In a cold medium (up = 0) the particles rest
in a state of equilibrium. Thus, a cold gas has the
same properties as a cold collisionless system
of gravitating particles. Consequently, it can be
expected that the dispersion relation for such a
system will be identical with (18). In fact, f, =
Né(v) in this case, and then (10) yields (18).

2. '"Cold'" Streams. We will consider
two streams of equal density N/2 traveling in op-
posite directions with the velocities £v;. In this
case f = (N/2){ 6(v—-—vy)+ 6(w+vy) s Then

" from (L0) we obtain the dispersion equation

alV 1 1 -
k2=_—2[(v1—u)2+(v1+u)2]' 9

When (19) is solved graphically [6], it is easy to
verify that all four roots are complex and that they
appear as conjugate pairs. Thus, in two cases
Im w > 0 and the system is always unstable in con-
trast to the case of a plasma.

When one of the two cold streams is not pre-
sent, (19) assumes the form

2 alV
k —2(1;1— mh (19a)
whence
o .1/ aV
T =N @0)

It follows from (20) that the instability of such a
system has a pulsating character and is not aperiod-
ic as in the case of cold media at rest. The result-
ing fluctuations have been explained as originating
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in asymmetry. In fact, if the perturbation of the
potential moves together with the streams, the
particles that move toward the perturbation and
those that overtake it will have different velocities.
The perturbation of the gravitational potential is
equivalent to a gravitational well. The particles
that travel from the potential barrier toward the
center in the direction of the flow of the stream
will have a lower speed than particles traveling in
the opposite direction. For example, when the
velocity of the stream is high, the particles of the
first class will be almost at rest. The particles
of the second class, on the other hand, will have a
high speed and, when reflected from the potential .
barrier, they execute frequent oscillations. Thus,
the density of the particles at each point in the well
fluctuates. The instability is caused by the capture
in the well of additional particles.

In the case of two cold streams, pulsations
arise when A < A,;. Infact, from (19) we have

kv
u? = v — 2k2(1:|:V1-—8 : ) @1)
The sign before the square root in (21) is found
from the condition 11n(1) u? = —aN/K, i.e., it is

positive. Now it follows from (21) that pulsations
will occur when

kzviz
1—
8 alV

<0, (22)

i.e., when

A<= 2 (23)
alV

This is obviously connected with the fact that for
sufficiently large dimensions the perturbed region
is asymmetrically smoothed.

3. System with Maxwellian Distri-

bution. In this case
fo= __.___.._A_,__ e~vu g 24)
Ynur

where uT 26/M.
By making use of the results in [7 8], we ob-
tain from (10)

2aN i~
2 — uLTZ {t+i¥nBe=[1 4 o(ip)]}, @5)

where B = u/uT, and ¢ is the error integral.

Formula (25) determines the type of waves
that arise in the given system. In view of the
difficulty in exactly solving the transcendental
equation (25), we will study its asymptotic be-

havior. When |B| » 1 (low temperatures), (25)
yields

k2ur® 1 3 15

Py ~*§z‘(‘+w+4—gr)- (26)

Limiting ourselves to terms of the order 872
compared with unity, we obtain (18) in the following
expressions

s _a_N__ a2v2 _ 3 an 27
B 2k2uy? dlfurt 2 kfugr” @n

The sign in front of the square root has been chosen
in order that (27) tend to (18) as up —-0.

Expression (27) infers the presence of a pul-
sating instability when

<= | e (28)

The way in which the instability arises is exactly
the same as in the case of interpenetrating cold
streams, because the Maxwellian distribution on
the average is equivalent to streams moving with
the velocities fup.

The inverse value of the increment (the instabil-
ity time), for example, when A > A, according
to order of magnitude is equal to

r=— @9)

Im m~]/ [ / 1+]/1—6’51‘-’.-. . (29a)

4. Interpenetrating Streams with

Maxwellian Velocity Distributions.
Here fj has the form - '

N (v— vt -
h= a0 ”urz”’—]
’+cxp[—%ﬂ£;’). 30)

In this case the dispersion equation (10) be-
comes

=20 e ifae—n)

Xexp[—(B—n)Al L oli(f—n)]] =
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+iYr(p+n)exp[— (B +n)21 £ oli(p+nll}, (B1)

where 7 = v;/up, and the signs (+) correspond to
waves traveling along the x axis in the positive and
negative directions. When | 8 | >» 1, one ob-
tains the so-called "cold" approximation from (31),
i.e., limiting oneself toterms of the order (3tn)2:

aN aN aN
ey %Y e} —4m2)  (B2)
B ( 2z ) 2KPur? (2k2u1~2 )
Here also the instability acquires pulsating char-
acter when A < A, which satisfies (23). The time

to develop instability is determined by formula (29),

-where Im w is found from (32).

5. Application to the Galaxy. By

using the theory developed above, one could con-
sider the possible types of waves, the instability
times, and other related questions for various
stellar systems. It is well known that in the major-
ity of systems that have been studied the distribu-
tion of the peculiar velocities in different direc-
tions can be well described by either the Schwarz-
schild law, or, in terms of interpenetrating stellar
streams, by the Kapteyn-Eddington law. Since
both models agree equally well with the observa-
tions, either model can be adopted. Following [2],
we will adopt the stream model. Thanks to methods
developed by Eddington [9, 10], the parameters

(up, v;) of the streams can easily be determined
from observations. Thus, by using the results of
Sections 3 and 4, it is possible to study the types

.of waves in the locally homogeneous regions of

different stellar systems. As was emphasized
above, the extension of the results obtained to sys-
tems is on the whole incorrect, since according

to the initial assumptions consideration has been
given to small regions of the system, only, where
the gravitational potential can be assumed to be
almost constant. We will now consider the Galaxy
in the neighborhood of the sun.

In the direction Z of the axis of rotation, it is
apparent that fj(v,) is a Maxwellian function with
up = 18 km/sec [11]. In this direction the dimen-
sion of the locally homogeneous region is I =
0.38 kpc [12]. The density is p = NM ~ 3.5 - 107%
g/cm?® [2]. The critical wavelength on the basis
of these values of up and p turns out to be Aoy =
1.25 kpc. According to (28), the instability as-
sumes pulsating character starting withA;=(12)1/, op.

It is known [2, 13] that in the galactic plane
the function f; can be well approximated by for-
mula (30). Small differences in the magnitudes of
vy and N in both streams will be neglected. Ac-

LEBEDEV, M. N. MAKSUMOV, AND L. S. MAROCHNIK

cording to {2], v4 = 21 km/ sec, up =25 km /sec,
p~3.5+10"% g cmd. Then, Agp = 5.32 kpe,
A = 8 kpc according to the approximation (23), and
I ~1.4kpe [14].

For a rough estimate of 7, use can be made
of (29). Taking Imw ~ (@N)/2, we obtain 7 ~
2 - 108 years. This value of T is of the order of
the period of rotation of the Galaxy in the neighbor-
hood of the sun but is significantly shorter than
relaxation time due to pairs of approaching stars.

It is clear that, in the galactic plane and in
the direction of the Z axis, A, and A; are larger
than /. For this reason, when the results of the
homogeneous theory are applied to the Galaxy they
have a formal character since the homogeneous
theory is inapplicable to regions of systems with
a large value of . Consequently it is impossible
to say anything about the stability of the Galaxy on
the basis of the homogeneous theory; inhomogene-
ous treatment is necessary.

The second part of this work will study waves
in inhomogeneous entities. A general discussion of

‘the results relating to locally homogeneous regions

and to systems as a whole will be given in this
journal.
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